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Abstract

It is known that observations from any censored life (or competing
risk) process can be described by a random censoring (or indepen-
dent risk) model. On the other hand it is impossible to verify that
the censoring is really random. A class of age-dependent censoring
processes are defined and the class of corresponding subsurvival func-
tions is described. Exponential life variables censored by independent
variables can also be described by age-dependent censoring models if
the censoring variable is DF R. The total time on test statistic consis-
tently estimates the expected life of an exponential life variable under
random right censoring. If the censoring is age-dependent, the Total
Time on Test statistic will severly overestimate the expected life of the
variable of interest. Care should be taken to motivate the application
of the total time on test statistic in such situations.
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1 Introduction

For exponential reliability life variables subjected to random right censoring,
the Total Time on Test statistic

TTT - total time on test (1)

# of failures

is the inverse maximum likelihood estimator of the failure rate. It is widely
used in reliability analysis to estimate the expectation and failure rate of the
uncensored life process.

In practice it is impossible to determine whether the censoring is really
random or whether the uncensored life process is really exponential®. In many
situations, other assumptions would also be prime facie plausible. In practice,
analysts regard the assumptions underlying the TTT as idealizations, and
expect that the error caused by using these idealizations will be small.

This paper shows that the idealization is not harmless. Two classes of
censoring models for right censored life variables are considered. The first
class is random right censoring. The second class assumes that whether a life
variable is censored is independent of its age, but given that it is censored, the
censoring time may depend on age. These are termed age-dependent censor-
ing models. This type of coupling between age and censoring time has prime
facie plausibility in many situations. Suppose a reliability component shows
symptoms prior to failure. If these symptoms are observed by personnel,
the component will be taken off line and repaired, hence censored. However,
the process of observation may be described by a random variable which is
independent of the component’s age. In medical cohort studies, patients who
feel healthy after a treatment might be more likely to move to another city,
thus causing a censored observation, whereas others tend to stay put.

It has been known at least since Cox [4] that any competing risk or
censored life process can be described by an independent model (see also [5],
6], [10].) These authors draw attention to the problem of "identifiability”,
namely that the empirical failure data do not determine a unique model.
Empirical failure data determine at most a pair of subsurvival functions.

!Tests for exponentiality assuming random censoring can be given [4]




This paper describes the set of subsurvival functions which can be de-
scribed by age-dependent censoring. A necessary and sufficient condition is
that the conditional subsurvival function of the life variable should domi-
nate the conditional subsurvival function of the censoring variable. If the life
variable is exponential and if the censoring is random, then the conditional
subsurvival function of the life variable dominates that of the censoring vari-
able if the latter has a decreasing failure rate (DFR). The dominance relation
is reversed if the censoring variable has an increasing failure rate (IFR). Cases
in which the censoring variables are also exponentially distributed lie on the
boundary between these two subsets. A concluding section points out that
the consequences of choosing the wrong model can be severe, when estimating
the expectation ofs the life variable. This is especially true when censoring
is frequent, as is usually the case in reliability applications. A "dual” model
in which the roles of the life and censoring variables is reversed, is discussed
briefly.

2 Notation and Definitions

Let X and Z be positive random varibles with distribution functions Fx and
Fz. X1Z says that X and Z are independent, X ~ Z says that Fx = F;
and X A Z = min{X, Z}. Sx = 1 — Fx is the survival function of X. Sx(t)
=P{X >t and X < Z} is the subsurvival function. Note that S} depends
on Z, although this fact is suppressed in the notation. Note also that S%(0)
=P{X < Z}. We assume that Y = {min{X, Z},1{x<z} is observable,
where 1(,} is the indicator function of the event {e}. X is considered the
variable of interest, and Z is the censoring variable. By observing Y we
observe the smallest of these two, and observe which it is. It is convenient to
speak of variables X; as components and of variables Z; as censoring times.
If Z; < X; we say the component i is censored. The value assigned to Z;
when Z; > X; is arbitrary.

We say that S} and S5 form a subsurvival pair if

1. S7 and S; are non-negative non-increasing real functions with S;7(0) <
1 and S5(0) < 1.

2. limy .o S7(t) = limy .o S5(t) = 0; and
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3. $:(0) = 1 — S3(0).

Let Y;;t1=1,2,--- be 1.i.d. copiesof Y, and Y = Y}, Ys,---. The subsur-
vival pair S} and S} determine the distribution of Y and hence contains all
the information which can be extracted from observing Y.

3 Two Classes of Models

We study two classes of models for Y.
e Class I: random right censoring: X1 Z
o Class II: age-dependent censoring: Z = X — §; X Lsgn§

In age-dependent censoring the probability of a component being censored
is independent of its age, but given that it is censored, the time at which it
is censored may depend on its age. Putting 0 = (X — §)/X, we can also
express an age dependent censoring variable as Z = Xo.

In this section we determine under what circumstances right censored life
data can distinguish between these two model classes. The following theorem
has been in the folklore for many years (see , {1}, [3],[4], [6], [7], [10] ), but a
proof sketch is provided for completeness?.

Theorem 1 Let X and Z be continuous life variables.

1. If X1Z. and X'LZ' with Sy = Sk, and S = Sy, then X ~ X' and
Z~7.

2. if S; and ST are a subsurvival pair and are continuous, then there
exist independent random variables X and Z such that S% = S| and
S, =25;.

2Most authors show that any censored life process can be modeled by a process for
which P{X > tNZ >t} = P{X > t}P{Z > t}, which is implied by but not equivalent
with independence [6]. The second statement in Theorem 1 is proved by Tsiatis [10]; the
version here is simplified by the restriction to two "competing risks”.




Proof: 1: Using SxSz = Sx + S5 and dSx(t) = Sz(t)dSx(t);

_ t  dSkx(u)

Sx() = e:cp{ 0 S}‘((u))-(i- S}(u)} ’ @)
_ t  dSy(u)

Selt) = ep { 0 S}(u)isz(u)}‘ @

Similar expressions hold for X’ and Z’. For 2, choose X 1 Z with survival
functions

= exp {/ 5 Z)gi-(g(U)} (5)

From 1 we know that these survival functions can also be written as (2) and
(3). Thus we have

dSt  S1+5;  dS;

dSy Sy +Sp dSy

Equating the product of equations (2) and (3) with the product of (4) and
(5):

d(S; +55) _ (S5 +53) )
ST+ 53 Sy + 5%

so that In(S} + S3) = In(Sy + S3), or

Si+S; __dSy dSx @)
Sy +8S3 dS, dS;’

Since lim;_,(S7(t) — Sk(t)) = 0, and it follows that S} = Sk and similarly
for 7. O

From Theorem 1, any continuous subsurvival pair defines a unique model
of class I. To get this type of result for class I] we must restrict to continuous
strictly monotonic subsurvival pairs.




Theorem 2 Let {S}, S5} be a pair of continuous strictly monotonic subsur-
vival functions; then the following are equivalent:

1. There exist random variables £ and X with sgn(§)LX such that

Sit)=P{X>tng<0} (8)
S;t)=P{X-€(>tne> 0} (9)

2 Forallt >0 .
Si) _ S30)

51(0) © S5(0)

(10)
Proof: (1) implies (2). Since X Lsgn(§):

Si(t) = P{X >t|¢ <0}P{¢ <0} =P{X > t|¢ < 0}5;(0) = P{X > t|¢ > 0}5;(0)
S(t) = P{X —€&>t€>0}P{€>0} = P{X — £ > tj¢ > 0}55(0).

Hence for t > 0;

Si(t)
51(0)

S53(2)
53(0)

=P{X>tt>0}>P{X-¢>tt>0}=

(2) implies (1): Let X and Z be random variables with survival functions
Sx(t) = S;(t)/S1(0); and Sz(t) = S3(¢)/S5(0). Then Sz(t) < Sx(t) for
all t > 0, and Sg' and S3' exist. Choose a random variable § L X; with
P{§ =1} = 1—- P{é =0} = S;(0); and put:

€ =8X - Sz'Sx(X)) - (1-9) (11)




We have {¢£ > 0} = {6 = 1}; {{ = —1} = {6 = 0}. Hence X Lsgn(£) and

P{X-¢>tnE>0} = P{X—¢ >t|¢ >0}S;5(0) =
P{S7'Sx(X) > t}5;(0) = P{X > Sx'Sz(t)}5;(0) =
(SxSx'5z)(t)S5(0) = Sz(t)S3(0) = Sa(t),

Also P{X > tN¢& < 0} = Sx(t)P{€ < 0} = Sx(t)S1(0) = Sx(t).0

Observations of a right censored process Y yield an empirical subsur-
vival pair which converges to Sy and S%. These in turn express all we can
learn from the empirical process. Theorem (1) says that a unique random
censoring model will always describe the process. Theorem (2) says that
an age-dependent censoring model will describe the process if (10) holds.
Uniqueness in this case is impossible as the distribution of ¢ given £ < 0 is
undetermined.

Of course, if the inequality in (10) were reversed, then a model could
be found in which the roles of X and Z were reversed. In other words the
sign of £ would be independent of the censoring variable Z. Such models
would be difficult to interprete in a reliability context as it is difficuit to
assign meaning to Z when X < Z. However, in medical cohort studies this
type of model might make sense. Typically the end date of such studies is
fixed in advance, but patients are admitted into the study at random times,
after undergoing some treatment. The variable Z; denotes the amount of
time that patient ¢ is potentially under observation, that is, the difference
between the study termination date and i’s entrance date. Let X; denote
the time after treatement at which ¢ dies. It is plausible that whether 1
responds to treatment, and hence does not die within the time of the study,
is independent of the date at which ¢ entered the study. Hence we could
model X; = Z; — § with Z; 1sgn(€). Observations fitting this pattern are
reported in [9].

The following theorems relate class I to the assumptions of exponentiality
for X and/or Z.

Theorem 3 Let X LZ with continuous strictly monotonic distribution func-
tions. Then any two of the following statements imply the others
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1. Sx(t) = exp™
2. Sx(t) = T}? exp~ A+t
3. 53(t) = x exp~ M+
4. Sz(t) = exp™
Proof: For {1,2} = 3 and {2,3} = 1, substitute the information given into

equations (2) and (3). {1,4} = 2 is a direct computation. For {1,3} = 4,
put fz(u) = —dSz(u)/du, then

Sy(t) = /t exp™™* fz(u)du = /\—_’:_-;exp—(«\+1)t

Taking derivatives of both sides yields fz(t) = yexp~, which yields 4. O

Corollary If X 1 Z and Sx(t) = exp™™, Sz(t) = exp™ !, then

Sy(t) _ Sx(®
53(0) ~ 5%(0)

The above property does not uniquely characterize the exponential dis-
tribution [5).

Theorem 4 Let X1 Z and suppose that there erists a A such that for all
T>0:

P{X <TNX < Z}=AE(X A Z)l{xrzery; (12)

then Sx(t) = exp~™. Conversely, if X LZ and Sx(t) = exp™™, then (12)
holds.




Proof: Using Sxaz = SxSz = Sy +S3, and E(X A Z)l(xaz<t) = Jo (Sk +
S%), we have:

P{X<TNnX<2Z} = PX<Z}-P{X>TNX<2Z}=
" = T *
Sx(0) = Sx(T) = - [ dsy(w) =
0
T T
A /0 Sxpz(w)du = A /0 (S% + S5)(u)du.
Since this holds for all T > 0,

dSy(w)  _
53 () + 55(w)

The proof is concluded by substituting this into (2). The converse is an
easy computation.O

It is interesting to remark that Theorem 4 is a derivation of TTT which
does not appeal to the maximum likelihood estimate of A. Indeed, put T = oo
in (12), then TTT consistently estimates 1/.

Let Sx and Sz be strictly monotone, so that their derivatives exist ev-
erywhere. Recall that the failure rate of X = —(d/dt)(log Sx). We say that
Z is I F R if its failure rate is increasing, and DF'R if it is decreasing ([2]).

Theorem 5 Let X 1Z with subsurvival functions Sy and S; respectively.
Let Sx(t) = exp™™, and let Sz(t) be continuous and strictly monotone. If Z

s DFR then . .
Sx(t)  $3(0).

;1> 0.
5%(0) © 5%(0)
Similarly, if Z is IFR then:
Y (t 7 (t
Sx() _ Sy o

Sx(0) ~ 53(0)°

9




Proof: We prove only the first statement, as the proof of the second is
similar. Let Gz(t) = S3(t)/S3(0), and Gx(t) = Sk(t)/S%(0), and put
gz(t) = dGz(t)/dt, gx(t) = dGx(t)/dt. The assumptions on X and Z
insure that these derivatives exist everywhere. Since the failure rate of X is
constant, we have from (2):

_ dSy(t)
- Sx(t) + S3(t)

From (3) we may write the failure rate of Z as

_dsy() _/\dS}(t)
Sx(t) +S3(t) " dSx(t)’

(13)

The failure rate of Z is decreasing if and only if gz(t)/gx(t) is decreasing, or

gz(t)gx(t) — Qx(t)gz(t).

0>
9x(t)?

(14)

where §z{(t) = dgz(t)/dt, gx(t) = dgx(t)/dt. Since gz(0) = gx(0) = 1, we
have §z(0) < gx(0) and for ¢ sufficiently close to 0, we have gz(t) < gx(t).
The set A = {t > 0|gx(t) =gz(t)} is closed, and has a smallest element if A
is non-empty. Suppose A is non-empty and that t; is its smallest element.
Since gz(t) < gx(t) for t < ty, we must have §z(t9) > gx(yo). However, since

9z(to) = gx(to), we must have from (14) §z(to) < gx(to). Hence A is empty.
a.

4 Conclusions

Suppose X has an exponential distribution and that Sz(t)/S%(0) < Sx(t)/S%(0).
The data can be described either by an age-dependent censoring model, or
by a random censoring model with a DFR censoring variable. The conse-
quences of making the wrong choice in estimating the expectation of X can

10




be quite severe. Suppose we order the failure and censored observations as
T1,"**yZTmy 21, 2n. If we assume X L Z and Sy = exp~™!, then by Theorem
4 we could consistently estimate the expectation of X as

mo_ no.
=1 T Xje1 %

m

However, if we assume an age-dependent censoring model then P{X = z|X <

Z} = P{X = r}, hence we could consistently estaimate the expectation of

X as m
m

In typical reliability applications m << n.
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